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Abstract

A modal decomposition strategy based on state-variable ensembles is formulated. A nonsymmetric, generalized

eigenvalue problem is constructed. The data-based eigenvalue problem is related to the generalized eigenvalue problem

associated with free-vibration solutions of the state-variable formulation of linear multi-degree-of-freedom systems. For

linear free-response data, the inverse-transpose of the eigenvector matrix converges to the state-variable modal

eigenvectors, and the eigenvalues of the nonsymmetric eigenvalue problem approximate those of the state-variable model.

As such, the eigenvalues lead to estimates of frequencies and modal damping. The interpretation holds for linear systems

with multi-modal free responses, whether damping is small or somewhat large, modal or nonmodal, and without the need

of input data.

r 2007 Published by Elsevier Ltd.
1. Introduction

This paper presents a method of decomposing free-response ensemble data into modal components, while
enabling frequency, damping, and mode-shape estimation for generally damped linear multi-degree-of-
freedom systems. The basic idea is a generalization of proper orthogonal decomposition [1–3], with similarity
also to smooth orthogonal decomposition [4] and complex orthogonal decomposition [5]. Below, the
application of these methods to modal analysis is reviewed, and the niche of the new method is staged.

Proper orthogonal decomposition is now a standard tool that has been applied to turbulence, structures,
and many other types of systems. Proper orthogonal decomposition produces modes that optimize the signal
energy distribution in a set of measured time series. Proper orthogonal decomposition has been applied, for
example, to characterize spatial coherence in turbulence and structures [1–3,6–9], to evaluate the dimension of
the dynamics [3,6–8,10], to detect modal interactions [11,12], to produce empirical modes for reduced order
models [13–19], and in system identification [20–23]. The proper orthogonal decomposition is similar to
Karhunen–Loeve decomposition, principle components analysis, and singular value decomposition. All of
these tools have been compared for structural applications [24]. The similar biorthogonal decomposition has
also been applied to fluids and plasmas [25,26].
ee front matter r 2007 Published by Elsevier Ltd.
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Proper orthogonal decomposition is easily applied to discrete systems, or systems with discrete
measurements xiðtjÞ, where i ¼ 1; . . . ;M are the sensor indices, and j ¼ 1; . . . ;N are the time sample indices.
An ensemble matrix is formed as XT ¼ ½x1; . . . ;xM �, where the vectors xi have elements of time samples xiðtjÞ.
So each row of X is a sampled history of one sensor on the structure. Then the matrix R ¼ XXT=N is formed.
If the means of the signals are all zero, then R is a covariance matrix. Otherwise, we will refer to it as a
correlation matrix, and the method can still be applied. The eigenvectors of R are the proper orthogonal
modes, and the eigenvalues are the proper orthogonal values.

If the mass distribution is uniform, the proper orthogonal decomposition produces the normal modes of a
structure [27–30], including 2-D structures [31]. If the mass distribution is not uniform, but known, or if the
stiffness matrix is known, proper orthogonal decomposition can be weighted to produce the normal modes
[27]. Proper orthogonal decomposition can be used for modal analysis if the damping is light, and if the system
is either impulse excited or randomly excited [32]. The proper orthogonal modes then converge to the linear
normal modes, and the proper orthogonal values provide the mean squared values of the modal coordinates.

The related smooth orthogonal decomposition can be applied in inhomogeneous, lightly damped cases to
find structural modes [4]. In this case, an ensemble V � _X of velocities is formed. This can be done by finite
difference through a matrix D, such that V ¼ XDT. The velocity covariance matrix S ¼ VVT=Nv is formed,
where Nv is the number of velocity samples. Then the generalized eigenvalue problem is written as lRc ¼ Sc.
For a free multi-modal response with light damping, the eigenvalues l approximate the frequencies squared,
and the inverse-transpose of the modal matrix W approximates the linear modal matrix. (Cast this way, the
method might aptly be called ‘‘frequency decomposition.’’)

Another decomposition technique is the complex orthogonal decomposition [5]. Here, the ensemble X of
oscillatory signals is expanded into the complex domain to form an ensemble Z of complex analytic signals.
This is done non-uniquely by the FFT [33] or Hilbert transform [33,34]. Then a complex Hermitian correlation
matrix R ¼ ZZ̄

T
=N is formed. (A complex Hermitian matrix was also formed in the frequency domain for

modal analysis [35].) The complex Hermitian matrix R has real eigenvalues and generally complex
eigenvectors. The eigenvalues represent mean squared amplitudes of complex modal oscillations. The complex
eigenvectors can be interpreted as complex modes, representing generally a mix of traveling and standing wave
behaviors, which can be extracted and quantified. As such, the complex orthogonal decomposition can
characterize the modal content of systems with mixed standing and traveling wave behavior. Initial indications
are that the complex modes can be efficiently extracted. Much like proper orthogonal decomposition for
general systems, the complex eigenvectors will not produce complex linear normal modes except under special
circumstances. But our ongoing work suggests that the complex orthogonal decomposition provides an
optimized and systematic characterization of generally oscillatory behavior.

The approach presented here is a generalized eigen decomposition based on state-variable ensembles. We
will tie this decomposition strategy to state-variable models of generally damped linear vibration systems to
reveal a method of obtaining frequency, damping, and mode shape information, without access to input
measurements. The method will be illustrated with numerical examples.

2. Nonsymmetric state-variable modal decomposition

In this section, we summarize the state-variable modeling of vibration systems. The decomposition equation
is presented, and then tied to the state-variable model.

2.1. State-variable linear vibration model

The state-variable model of linear vibration systems can be used on systems with proportional (Rayleigh
[36]), modal, and nonmodal (non-Caughey [37]) damping to obtain damped vibration modes [38,39]. The
equations of motion for free vibrations are

M €xþ C _xþ Kx ¼ 0, (1)

where x is an n� 1 array of mass displacements, M;C, and K, are the n� n mass, damping, and stiffness
matrices, and the dots indicate time derivatives. Then defining a 2n� 1 state vector yT ¼ ½ _xT;xT�, and
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introducing the equation M _x�M _x ¼ 0, yields unforced equations of motion of the form

A_yþ By ¼ 0, (2)

where

A ¼
0 M

M C

� �
; B ¼

�M 0

0 K

� �
. (3)

A and B are 2n� 2n and symmetric, but are neither positive nor negative definite.
Assuming a response of the form y ¼ eat f, the eigenvalue problem

aAfþBf ¼ 0 (4)

in general yields complex eigenvalues a and eigenvectors f, with f ¼ ½vT;wT�T, where n� 1 vector partition v

corresponds to characteristic shapes of velocity states, and partition w represents characteristic shapes in
displacement (complex modes). By the construction of y, v ¼ aw. The vectors f are orthogonal with respect to
matrices A and B. The latter does not imply that the vectors w are orthogonal with respect toM and K. In fact,
they are not.

2.2. Decomposition strategy

The decomposition strategy is based on the free-response state-variable ensemble Y ¼ ½VT;XT�T, where X is
a displacement ensemble, and V ¼ XDT � _X is an approximate velocity ensemble, like the smooth orthogonal
decomposition [4]. An example of an ðN � 2nd Þ �N matrix of centered finite differences, with nd ¼ 1 for half
the span of the finite difference, is

D ¼
1

2Dt

�1 0 1 0 . . . 0

0 �1 0 1 . . . 0

..

. . .
. . .

. . .
. . .

. ..
.

0 . . . . . . �1 0 1

2
66664

3
77775, (5)

where Dt represents the sampling time. Thus V is n� ðN � 2nd Þ, and so the first and last nd columns of X are
dropped so that Y has compatible partitions.

We then take the derivative W ¼ YDT � _Y, this time using an ðN � 4ndÞ � ðN � 2nd Þ difference matrix D.
The first and last nd time samples of Y are then dropped so that the dimensions of Y and W are both
2n�N � 4nd . We form a correlation matrix R ¼ YYT=ðN � 4ndÞ and a nonsymmetric matrix N ¼

YWT=ðN � 4ndÞ.
The eigenvalue problem is then

aRc ¼ Nc . (6)

Rewriting this eigenvalue problem, aYYT c ¼ YWT c. Making use of Eq. (2), W � _Y ¼ �A�1BY, and
we have

aYYT c � �YYTBTA�T c . (7)

We expect YYT to be invertible if all displacement measurements are independent and if N � 4nd4n.
As such, ac � �BTA�T c. In matrix form

WK � �BTA�TW, (8)

where K is a diagonal matrix of eigenvalues. Taking the inverse-transpose yields W�TK�1 � �B�1AW�T,
whence BW�T � �AW�TK, and hence

�A�1BW�T � W�TK. (9)

Letting U ¼ W�T, the data eigenvalue problem leads to

�A�1BU � UK, (10)



ARTICLE IN PRESS
B.F. Feeny, U. Farooq / Journal of Sound and Vibration 310 (2008) 792–800 795
which is a generalized eigenvalue problem with matrices A and B, the solution of which determines the
unknowns U and K. The matrix form of the structural eigenvalue problem of Eq. (4) is

�A�1BU ¼ UC, (11)

a generalized eigenvalue problem with the same matrices A and B, the solution of which determines the
unknowns U and C. The eigenvalue problems of Eqs. (10) and (11) have the same solution (within the modal
normalization constants), indicating that U � U ¼ W�T and C ¼ K. (The same logic is seen in smooth
orthogonal decomposition analysis of linear vibration systems [4].)

Thus, we expect the eigenvalues of Eq. (6) to approximate the state-variable eigenvalues, containing
information about damping and frequency. The inverse of the modal matrix from Eq. (6) resembles the
complex linear normal modal matrix of the state-variable system Eq. (4), and contains velocity and
displacement partitions. The only approximation in the method is in _X � XDT and _Y � YDT. Hence we
expect reasonable estimations when noise is limited and the step size is sufficiently small compared to
characteristic time scales. This method has some similarity to the ‘‘Ibrahim time domain’’ method, which is
based on responses and their delays [40].

3. Numerical examples

For comparison, we used the example shown in Ref. [27] for proper orthogonal decomposition and Ref. [4]
for smooth orthogonal decomposition. We will present underdamped and overdamped examples for both
proportional and generalized damping. The mass and stiffness matrices are

M ¼

2 0 0

0 1 0

0 0 1

2
64

3
75; K ¼

2 �1 0

�1 2 �1

0 �1 1

2
64

3
75 (12)

and the initial conditions were xð0Þ ¼ ð1; 0; 0ÞT, and vð0Þ ¼ ð0; 0; 0ÞT. The undamped natural frequencies of the
system are o1 ¼ 0:4209, o2 ¼ 1:000, and o3 ¼ 1:6801.

In each simulation, the time responses for each mass displacement and velocity were numerically computed.
Here, we used a step size Dt ¼ 0:0049767 and a sample size N ¼ 3000. This time record closely matches one
period of the lowest-frequency mode. We generated the state variable response from yðtÞ ¼ Uq0e

at where
q0 ¼ FTAyð0Þ. To emulate an experiment, we kept only the displacement ensemble X from the displacement
partition of the ensemble generated from sampling yðtÞ. We approximated _X � V ¼ XDT, and built the state-
variable data ensemble Y. The ensemble W ¼ YDT (independent from displacement modal vector u) was then
formed and the endpoints were truncated to obtain compatible matrix dimensions. The eigenvalue problem
Eq. (6) was formulated using Y and W.

3.1. Proportionally damped systems

In this example we chose the damping matrix to be proportional to just the mass matrix, such that C ¼ cM.
First, we considered an underdamped example with c ¼ 0:5. The system eigenvalues are complex, of the

form �zjoj � ioj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2j

q
. These values are a1 ¼ ā1 ¼ 0:25þ 0:3386i, a3 ¼ ā4 ¼ 0:25þ 0:9682i, a5 ¼

ā6 ¼ 0:25þ 1:6614i. The modal damping factors are then z1 ¼ 0:5940, z2 ¼ 0:2500 and z3 ¼ 0:1488. The
lowest-frequency mode has a damped frequency of od1 ¼ 0:3386. Our time record specified above spans 81%
of the associated oscillation period.

From the decomposition eigenvalues, estimates of the damping factors and natural frequencies were
identical to that of system to more than four significant figures. For proportional damping three out of six of
the displacement partitions of the state-variable modal vectors are independent. The corresponding
independent displacement eigenvectors were normalized to real form of unit length as uT1 ¼

ð0:3602; 0:5928; 0:7204ÞT, uT2 ¼ ð�0:7071; 0:0; 0:7071Þ
T and uT3 ¼ ð0:2338;�0:8524; 0:4676Þ

T. All agreed with
the linear normal modes (LNMs) to fourth decimal place.
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Now we present an overdamped example with c ¼ 2:5, leading to two complex and four real structural
eigenvalues. The complex eigenvalues are a1 ¼ ā1 ¼ 1:25þ 1:1227i, whereas the real pairs are ð2:427; 0:073Þ
and ð2:000; 0:500Þ, which have modal damping factors of z1 ¼ 2:9701, z2 ¼ 1:2500 and z3 ¼ 0:7440. The
decomposition method also yielded two complex and four real eigenvalues from which damping factors and
natural frequencies were found to be identical to those of the structural problem. Also, the corresponding
independent displacement eigenvectors, normalized to real form of unit length agreed with the LNMs to the
fourth decimal place.

3.2. Generally damped systems

We considered underdamped and overdamped examples. For the underdamped example the damping
matrix was

C ¼

1:2 �0:9 0

�0:9 1:2 �0:3

0 �0:3 0:3

2
64

3
75. (13)

Then KM�1CaCM�1K, rendering the system to be nonmodally damped [37]. In the case of nonmodal
damping, the definition of a modal damping factor is ill posed. Nonetheless, the frequency of damped
oscillation is the imaginary part of the eigenvalue. The eigenvalues obtained from the structural-
model eigenvalue problem Eq. (4) are complex, and are a1 ¼ ā2 ¼ 0:7620þ 1:4190i; a3 ¼ ā4 ¼
0:2474þ 1:006i; a5 ¼ ā6 ¼ 0:0405þ 0:4218i. Using the magnitude of the eigenvalue as ‘‘oj’’, and comparing
the real part to ‘‘zjoj’’ produces numbers for ~zj, and ~oj. In this case ~z1 ¼ 0:0957; ~z2 ¼ 0:2388, and ~z3 ¼ 0:4731,
and ~o1 ¼ 0:4238, ~o2 ¼ 1:0360, and ~o3 ¼ 1:6107.

The modal decomposition eigenvalues were found to be nearly identical to the system structural
eigenvalues, and the ‘‘damping factors’’ and ‘‘natural frequencies’’ were identical to fourth decimal place. All
unit length normalized displacement partitions of the corresponding complex eigenvectors, wT

1 ¼ w̄T
2 ¼

ð�0:3674þ 0:0317i;�0:5901� 0:0129i;�0:7197�0:0056iÞT, wT
3 ¼ w̄T

4 ¼ ð0:6517þ 0:1358i; 0:0499� 0:1539i;
�0:7908þ 0:1022iÞT, wT

5 ¼ w̄T
6 ¼ ð�0:3526þ 0:1499i; 0:9224� 0:0431i;�0:3469� 0:2670iÞT, agreed with the

LNMs to the fourth decimal place.
Now a highly overdamped example is presented. With the damping matrix chosen as

C ¼

6:0 �4:5 0

�4:5 7:5 �3:0

0 �3:0 3:0

2
64

3
75, (14)

the structural modal eigenvalue problem (4) produces four real and two complex eigenvalues. The complex
eigenvalues are a1 ¼ ā1 ¼ 0:1858þ 0:4165i, whereas the real pairs are ð9:8853; 0:2432Þ and ð2:6180; 0:3820Þ.
The ‘‘damping factors’’ are ~z1 ¼ 0:4073; ~z2 ¼ 1:5000 and ~z3 ¼ 3:2665 and corresponding ‘‘modal frequencies’’
are ~o1 ¼ 0:4561; ~o2 ¼ 1:000, and ~o3 ¼ 1:5504.

The decomposition method produced four real and two complex eigenvalues nearly identical to the
structural eigenvalues. The displacement partitions of the six eigenvectors were wT

1 ¼ w̄T
2 ¼ ð0:4717� 0:0829i;

0:5784þ 0:0054i; 0:6728þ 0:0534iÞT, wT
3 ¼ ð0:5365; 0;�0:8439Þ

T, wT
4 ¼ ð0:1989; 0;�0:9800Þ

T, wT
5 ¼ ð�0:2792;

0:8869;�0:3680ÞT, and wT
6 ¼ ð0:1098;�0:7683;�0:6305Þ

T, which agreed with the LNMs to the fourth
decimal place.

The differentiation time step is a parameter of the method. If the step size is too large, it results in erroneous
parameter estimates. This implies that the sampling resolution needs to be chosen appropriately to fully
capture the features of the transient time response, and in turn to accurately estimate the system parameters,
particularly for very highly damped (or very fast) systems. For choosing the sample time, important features
of the response are the characteristic settling time, t1j ¼ 4=zjoj , and the oscillation period, t2j ¼ 2p=odj . Our
experience with numerous simulations suggests that any step size that lies within 5% of the minimum (over j)
of t1j and t2j would give reasonable resolution. For data obtained through experiments, the settling time
criterion might be good enough to approximate the step size. Time records should be appropriately chosen
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with regard to the maximum of t1j and t2j. This information may not be available a-priori, but provides a
rough rule of thumb for the required time resolution.

4. Robustness under noise

To emulate a 10-bit quantization noise in digitization, we set up random fluctuations. The MATLAB
function ‘‘rand’’ was used to generate an ensemble of uniformly distributed random numbers between
�2�10x0, where x0 is the maximum initial condition. ‘Rand’ emulates white noise. We verified that the
spectrum of our random data was uniformly distributed. The root mean squared value was very close to
2�10x0=

ffiffiffi
3
p

. The random ensemble was added to the displacement matrix X. We then took numerical
derivatives of the new X to build V and subsequently our ensemble matrices. All the above mentioned cases
were studied under noisy data with a step size of 0:0049767 and N ¼ 3000. To reduce noise amplification from
differentiation over short time steps, we used a differentiation step size of 32 (nd ¼ 16). Examples of finite-
difference mass accelerations with noise are shown in Fig. 1 for the proportionally underdamped and
overdamped examples. The figure also shows how much time record was used in all previous examples.

For the proportionally damped, underdamped example of c ¼ 0:5, the errors in the estimated damping
factors and natural frequencies were 0.82%, 0.57% and 0.17%, and 0.09%, 0.05% and 0.01%, respectively.
The corresponding complex independent displacement eigenvectors normalized to real form agreed with the
LNMs to the fourth decimal place. For the overdamped case of c ¼ 2:5, we were able to get good estimates
of slow eigenvalues. The slow eigenvalues were 0.0743 and 0.4095, with corresponding vectors
ð0:3329; 0:5884; 0:7369ÞT and ð0:6968; 0:0221;�0:7169ÞT that are comparable to the state-variable model
eigenvalues (0.073 and 0.500) and vectors ð0:3602; 0:5928; 0:7204ÞT and ð0:7071; 0:0;�0:7071ÞT, respectively.
But the fast eigenvalues, even with faster sampling and a larger differentiation step size, were corrupted by
noise and gave erroneous results. This means we were unable to get good estimates of zj and oj for the
overdamped models. From the slow eigenvalues, though, we can estimate modal time constants, and given the
system frequencies (e.g. by FEM), we can still estimate damping ratios with reasonable accuracy.

In generally damped examples, for the underdamped case of Eq. (13), the errors in the estimated damping
factors and natural frequencies were 0.52%, 0.04% and 0.67%, and 0.04%, 0.11% and 0.13%, respectively.
The displacement partitions of the six complex eigenvectors agreed with the LNMs to the third decimal place.
For the overdamped case of Eq. (14), the same interpretation holds as described in the proportional damped
overdamped case.

Lastly, we considered the effect of increasing the noise level. Here the system was chosen to be modally
underdamped with C ¼ 0:5M. We used a differentiation step size of 32 (nd ¼ 16). As the noise bit level was
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Fig. 1. The acceleration of mass one, computed from applying the finite difference matrix D to the displacement ensemble with noise: (a) is

the underdamped example, and (b) is the overdamped example.
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incremented (doubling the noise level), the error typically increased, until at five bits, the error in the worst
mode (highest damping factor) was 55% (Figs. 2 and 3). That some frequency estimates improved with noise is
probably random happenstance.

We briefly looked into varying the number of data. The results were similar with N ¼ 3730 (a full response
cycle of the lower mode damped response), and the results deteriorated, primarily for the lowest mode, when
N was increased to 9000. The suspected reason is that, with the modal damping factor of 0.5940, the modal
response was settled for most of the time record, and therefore the lowest modal data was dominated by the
noise. In fact, one of the better results came with N ¼ 1865, representing a half cycle of lower mode response.
For further lower values of N, results deteriorated. It seems that the time record should include at least a half
cycle of the mode to be identified, but also for modes with significant damping, the time record should not be
too long. Observations with various step sizes were also made. When noise is present, longer differentiation
step sizes are beneficial at larger noise levels. However, the differentiation step size promotes error if it is a
‘‘large’’ fraction of the response period of the mode to be identified. These are simple observations from a few
numerical experiments. A systematic investigation is targeted for ongoing studies.
5678910
0.2

0.3

0.4

0.5

0.6

Increased Noise (Bits)

D
a
m

p
in

g
 E

s
ti
m

a
te

 ζ

55% Error

Fig. 2. The damping factor estimate for first mode for various levels of noise. The solid line (—) indicates system damping while dashed

line (- -) represents the estimated damping. The horizontal axis indicates the value b representing the uniform noise in the range �1=2b.
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Fig. 3. The modal frequency estimate for first mode for various levels of noise. The solid line (—) indicates modal frequency while dashed
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These examples suggest that the decomposition method is robust under low levels of noise that might be
seen in experiments. In multiple simulations, we found that examples with damping factors up to around
z ¼ 0:8 were successful. With higher damping we could estimate slow time constants but not zj and oj. In
experiments with accelerometers, displacement signals will be less prone to high frequency noise since
accelerations are integrated to obtain X and V .

5. Conclusion

We have proposed a method for extracting modal information from free responses of generally damped
linear multi-degree-of-freedom systems. A generalized unsymmetric eigenvalue problem was posed, involving
‘‘correlations’’ of state-variable ensembles. The resulting eigenvalues and eigenvectors can be complex in
general. The eigenvalues hold information on damping and frequency, while the transpose of the eigenvector
matrix produces estimates of the mode shapes associated with the state-variable model.

The method is applicable to free multi-modal responses with small or ‘‘large’’ damping, and with modal or
nonmodal damping. Under these conditions, the system input need not be measured; only the response is
measured.

We applied this scheme to several numerical examples, for which accurate estimates of modal parameters
(frequency, damping factor or decay rate, and mode shapes) were possible regardless of the damping value.
The sampling rate should be sufficiently smaller than the shortest characteristic time interval, defined by decay
time or oscillations period. For nonmodally damped systems, the eigenvalues can accurately quantify the
decay rates, damped frequencies, and mode shapes, including complex modes. In the presence of noise, large
damping factors could not be extracted, but the slow decay rates were still estimated. Numerical examples
suggest that there is an optimal choice of the differentiation time step, and the time record, for extracting
modal frequencies and damping in the presence of noise.
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